The Role of VI Improvers in the Formulation of Fuel Efficient Engine Oils with Long Drain Intervals

Yasushi Naitoh, Evonik Degussa Japan Co., Ltd
Frank Lauterwasser, Phil Hutchinson, Christoph Wincierz, Steffen Ulzheimer and David Gray, Evonik Oil Additives Inc

KSTLE Lubricants SYMPOSIUM
2012 18-19 October
Contents

1) Importance of Fuel Economy
2) Which Parameter Influence FE
3) Comb Polymers
4) Blend Study
5) Results from NEDC FE Testing
6) Summary and Conclusion
Importance of Fuel Economy
Consumer: EPA New Fuel Economy Label

- This new label provides more comprehensive fuel efficiency information and five-year fuel costs or savings compared with the average vehicle, as well as environment impact information.
Historical fleet CO2 emissions performance and current or proposed standards

Source: ICCT, Global Comparison of Light-Duty Vehicle Fuel Economy/GHG Emissions Standards, Update: June 2012

[1] China’s target reflects gasoline vehicles only. The target may be lower after new energy vehicles are considered.

US-LDV | Canada-LDV | EU | Japan | China | S. Korea | Mexico

Historical fleet fuel economy performance and current or proposed standards

Source: ICCT, Global Comparison of Light-Duty Vehicle Fuel Economy/GHG Emissions Standards, Update: June 2012

[1] China’s target reflects gasoline vehicles only. The target may be higher after new energy vehicles are considered.
How to Measure Fuel Economy
Current Status per Region

Source: Naitoh, SAE Asia 2009 Open Forum, March 4, 2009

Combined FE = 1/(0.55/FE[City] + 0.45/FE[Highway])

Source: Akiyama et.al., SAE932690

Source: Ando, Lubricants Russia 2010

JP JC08 mode (Current)

Source: Naitoh, SAE Asia 2009 Open Forum, March 4, 2009
Contents

1) Importance of Fuel Economy
2) Which Parameter Influence FE
3) Comb Polymers
4) Blend Study
5) Results from NEDC FE Testing
6) Summary and Conclusion
Which Parameter Influence Fuel Economy

- Sheared high temperature (KV100) viscosity
- HTHS at various temperatures
- KV40
- DI package chemistries
- Friction modifier
- Viscosity modifier
- High VI polymers, high VI PAMA
- Key is viscosity (plus e.g. FM)

However, correlation between these parameters and real life improvements in Fuel Economy is not straightforward
Contents

1) Importance of Fuel Economy
2) Which Parameter Influence FE
3) Comb Polymers
4) Blend Study
5) Results from NEDC FE Testing
6) Summary and Conclusion
Comb Polymer

- Linear
- Star
- Comb
- Hyperbranched
- Network
Improved V/T Performance of Comb vs. PAMA at Same PSSI
Benefit of the V/T Improvement for Engine Oil Application

- Lowering viscosity to achieve FE, while keep engine durability

Log log viscosity, e.g., HTHS vs. Log temperature

Low viscosity oil

Engine Durability

• Lowering viscosity to achieve FE, while keep engine durability
Contents

1) Importance of Fuel Economy
2) Which Parameter Influence FE
3) Comb Polymers
4) Blend Study
5) Results from NEDC FE Testing
6) Summary and Conclusion
Targets for Blend Study

Investigate the role of VI improve to formulate fuel efficient engine oils

- HTHS limit at 150°C
- 2.6; 2.9; 3.5 mPa.s
- NOACK limit
- DI package A
- Group III base oil
- Different VIIs
- Different SSI
- Different chemistry

Formulated fluids which best Viscosity/Temperature (V/T) performance
Investigated VII for Blend Study

<table>
<thead>
<tr>
<th>VII</th>
<th>SSI*</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PAMA</td>
<td>23, 45</td>
<td></td>
</tr>
<tr>
<td>dPAMA</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>HE-OCP</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>LE-OCP</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>HIS Star</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

- Base stock: Group III
- DI package A

* Bosch 30 cycle
Blend Study – Part 1

- Comb and PAMA lowest KV 40C at given/different HTHS level
Blend Study – Part 2

- Comb and PAMA lowest KV 100C & HTHSV 100C at given HTHS level
• Comb lowest HTHSV 100C at given HTHS level although almost no vis. down by permanent share
Contents

1) Importance of Fuel Economy
2) Which Parameter Influence FE
3) Comb Polymers
4) Blend Study
5) Results from NEDC FE Testing
6) Summary and Conclusion
Car for NEDC Testing

Daimler CGI 350
How to Measure Fuel Economy
EU: NEDC

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>ECE 15</th>
<th>EU DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>km</td>
<td>4×1.013=4.052</td>
<td>6.955</td>
</tr>
<tr>
<td>Duration</td>
<td>s</td>
<td>4×195=780</td>
<td>400</td>
</tr>
<tr>
<td>Average Speed</td>
<td>km/h</td>
<td>18.7 (with idling)</td>
<td>62.6</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>km/h</td>
<td>50</td>
<td>120</td>
</tr>
</tbody>
</table>
Repeatability of Test

Standard fluid

%age of extra fuel saved compared to test average

run a
run b
run c
run d
run e
Blend Data for NEDC Testing

<table>
<thead>
<tr>
<th>DI Package</th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comb</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-PAMA</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HSI Star</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>LE-OCP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Base Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 cSt group III</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Viscometrics

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTHS @ 150°C</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Viscosity at 40°C, cSt</td>
<td>42.86</td>
<td>66.57</td>
<td>78.62</td>
<td>70.45</td>
</tr>
<tr>
<td>Viscosity at 100°C, cSt</td>
<td>10.94</td>
<td>13.79</td>
<td>13.52</td>
<td>12.02</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>259</td>
<td>216</td>
<td>176</td>
<td>168</td>
</tr>
<tr>
<td>CCS Viscosity @ -30°C, cP</td>
<td>4025</td>
<td>4427</td>
<td>4542</td>
<td>5487</td>
</tr>
<tr>
<td>MRV @ -35°C, cP</td>
<td>9010</td>
<td>9100</td>
<td>30500</td>
<td>17000</td>
</tr>
<tr>
<td>MRV @ -40°C, cP</td>
<td>19700</td>
<td>18500</td>
<td>104500</td>
<td>33700</td>
</tr>
<tr>
<td>Yield Stress</td>
<td><35</td>
<td><35</td>
<td><70</td>
<td><35</td>
</tr>
</tbody>
</table>
Fuel Economy Data – NEDC
Fuel Economy Improvement vs Oil Viscosity

* All of Oils HTHSV150C were set to 3.5mPa.s
Contents

1) Importance of Fuel Economy
2) Which Parameter Influence FE
3) Comb Polymers
4) Blend Study
5) Results from NEDC FE Testing
6) Summary and Conclusion
Summary and Conclusion

- FE hot topic for the whole industry from OEM to consumer
- Different ways to measure FE → World harmonized test in the future?
- Different parameter are important for FE
- Lowering viscosity is key for FE → more accepted through the industry
- Lower viscosities over viscosity range and keep HTHS level high (high VI)
- FE ranking: Comb > PAMA > LE-OCP > HIS Star
- Future: oil is seen as a design element for new engine technologies
This information and all further technical advice is based on our present knowledge and experience. However, they imply no liability or other legal responsibility on our part, including with regard to existing third party intellectual property rights, especially patent rights. In particular, no warranty, whether express or implied, or guarantee of product properties in the legal sense is intended or implied. We reserve the right to make any changes according to technological progress or further developments. The customer is not released from the obligation to conduct careful inspection and testing of incoming goods. Performance of the product described herein should be verified by testing, which should be carried out only by qualified experts in the sole responsibility of the customer. Reference to trade names used by other companies is neither a recommendation, nor does it imply that similar products could not be used.